Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Biol. Res ; 48: 1-9, 2015. graf
Artigo em Inglês | LILACS | ID: lil-734618

RESUMO

BACKGROUND: The aim of our research work was to quantify total flavonoid contents in the leaves of 13 plant species family Asteraceae, 8 representatives of family Lamiaceae and 9 plant species belonging to familyRosaceae, using the multiplex fluorimetric sensor. Fluorescence was measured using optical fluorescence apparatus Multiplex(R) 3 (Force-A, France) for non-destructive flavonoids estimation. The content of total flavonoids was estimated by FLAV index (expressed in relative units), that is deduced from flavonoids UV absorbing properties. RESULTS: Among observed plant species, the highest amount of total flavonoids has been found in leaves ofHelianthus multiflorus (1.65 RU) and Echinops ritro (1.27 RU), Rudbeckia fulgida (1.13 RU) belonging to the family Asteraceae. Lowest flavonoid content has been observed in the leaves of marigold (Calendula officinalis) (0.14 RU) also belonging to family Asteraceae. The highest content of flavonoids among experimental plants of family Rosaceae has been estimated in the leaves of Rosa canina (1.18 RU) and among plant species of family Lamiaceae in the leaves of Coleus blumei (0.90 RU). CONCLUSIONS: This research work was done as pre-screening of flavonoids content in the leaves of plant species belonging to family Asteraceae, Lamiaceae and Rosaceae. Results indicated that statistically significant differences (P > 0.05) in flavonoids content were observed not only between families, but also among individual plant species within one family.


Assuntos
Animais , Humanos , Camundongos , Relógios Biológicos/genética , Caseína Quinase 1 épsilon/deficiência , Ritmo Circadiano/genética , Mutação , Proteínas tau/deficiência , Proteínas tau/metabolismo , Linhagem Celular , Células Cultivadas , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/fisiologia , Camundongos Knockout , Camundongos Transgênicos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Circadianas Period , Fosforilação , Núcleo Supraquiasmático/fisiologia , Fatores de Tempo , Proteínas tau/fisiologia
2.
Biol. Res ; 47: 1-7, 2014. graf, tab
Artigo em Inglês | LILACS | ID: biblio-950715

RESUMO

BACKGROUND: Effect of chlorocholine chloride (CCC) on phenolic acids composition and polyphenols accumulation in various anatomical parts (stems, leaves and inflorescences) of common buckwheat (Fagopyrum esculentum Moench) in the early stages of vegetation period were surveyed. RESULTS: Treatment of buckwheat seeds with 2% of CCC has been increased content of total phenolics in the stems, leaves and inflorescences. On analyzing the different parts of buckwheat plants, 9 different phenolic acids - vanilic acid, ferulic acid, trans-ferulic acid, chlorogenic acid, salycilic acid, cinamic acid, p-coumaric acid, p-anisic acid, methoxycinamic acid and catechins were identified. The levels of identified phenolic acids varied not only significantly among the plant organs but also between early stages of vegetation period. Same changes as in contents of chlorogenic acid, ferulic acid, trans-ferulic acid were found for content of salycilic acid. The content of these phenolic acids has been significant increased under effect of 2% CCC treatment at the phase I (formation of buds) in the stems and at the phase II (beginning of flowering) in the leaves and then inflorescences respectively. The content of catechins as potential buckwheat antioxidants has been increased at the early stages of vegetation period after treatment with 2% CCC. CONCLUSIONS: The obtained results suggest that influence of CCC on the phenolics composition can be a result of various mechanisms of CCC uptake, transforming and/or its translocation in the buckwheat seedlings.


Assuntos
Clormequat/farmacologia , Fagopyrum/efeitos dos fármacos , Polifenóis/biossíntese , Hidroxibenzoatos/metabolismo , Propionatos , Sementes/efeitos dos fármacos , Sementes/metabolismo , Catequina/análise , Ácido Clorogênico/análise , Cromatografia Líquida de Alta Pressão , Compostos de Tungstênio , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/metabolismo , Ácidos Cumáricos/análise , Inflorescência/efeitos dos fármacos , Inflorescência/metabolismo , Éteres de Hidroxibenzoatos/análise , Hidroxibenzoatos/química , Molibdênio , Antioxidantes/análise , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA